

Genomics and Transcriptomics

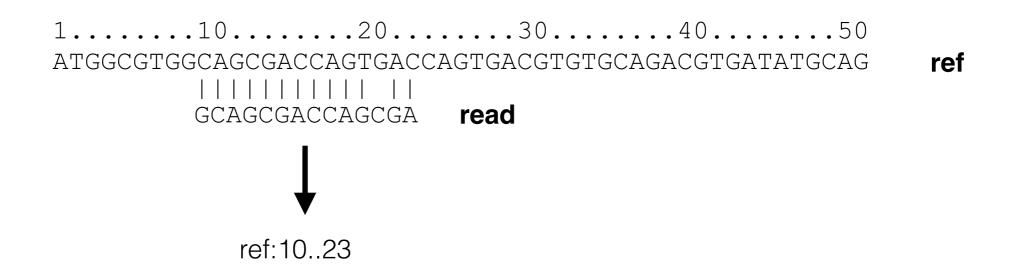
Class 07 - Sequence Mapping

INSTRUCTOR:

Aureliano Bombarely
Department of Bioscience
Universita degli Studi di Milano
aureliano.bombarely@unimi.it

Outline of Topics

- 1. Basics of read mapping.
- 2. Short read mapping.
- 3. Long read mapping.
- 4. Mapping of transcriptomic reads.
- 5. Visualization of mapped reads.
- 6. Uses and analysis.

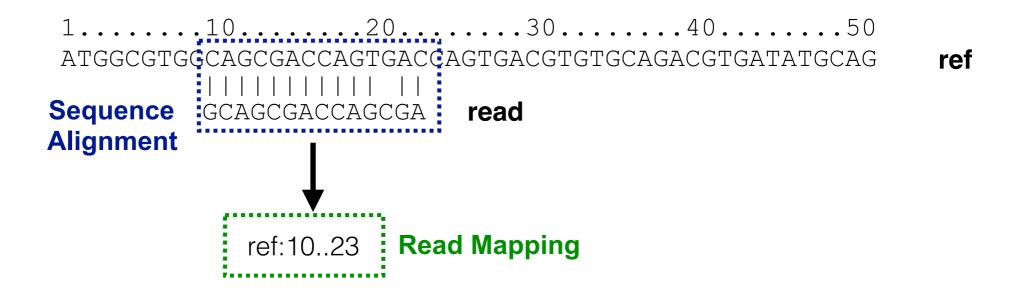

Outline of Topics

- 1. Basics of read mapping.
- 2. Short read mapping.
- 3. Long read mapping.
- 4. Mapping of transcriptomic reads.
- 5. Visualization of mapped reads.
- 6. Uses and analysis.

Read Mapping:

It is the process of search the **location** of a read **comparing** the its sequence and the **sequence of a reference**.

Sequence Alignment:

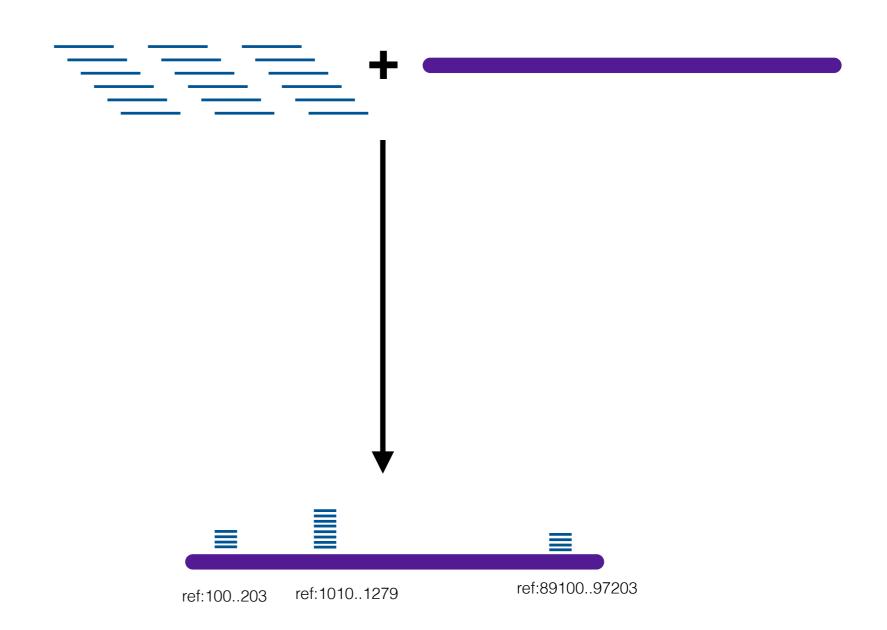

In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences. **Aligned sequences of nucleotide or amino acid residues are typically represented as rows within a matrix**.

http://en.wikipedia.org/wiki/Sequence_alignment

Read Mapping:

It is the process of search the **location** of a read **comparing** the its sequence and the **sequence of a reference**.

Sequence Alignment:


In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences. **Aligned sequences of nucleotide or amino acid residues are typically represented as rows within a matrix**.

http://en.wikipedia.org/wiki/Sequence_alignment

Read Mapping Considerations:

- Length of the read.
- Number of reads.
- Size of the reference.
- Differences with the reference

Read Mapping Considerations:

- Length of the read.
- Number of reads.
- Size of the reference.
- Differences with the reference

NGS short reads

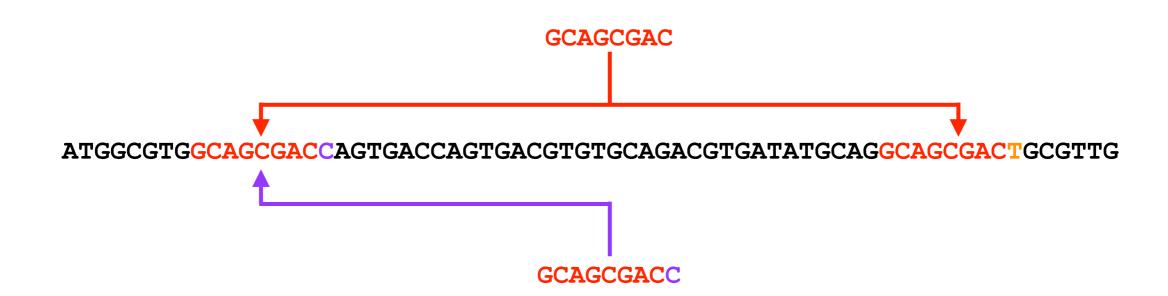
Sanger sequences

Genes/Transcripts/Sequence fragments

NGS long reads

Contig/scaffolds

Chromosomes


25-300 bp

Read Mapping Considerations:

- Length of the read.
- Number of reads.
- Size of the reference.
- Differences with the reference

Shorter is the read, more possibilities of ambiguity

Read Mapping Considerations:

- Length of the read.
- Number of reads.
- Size of the reference.
- Differences with the reference

NGS short reads

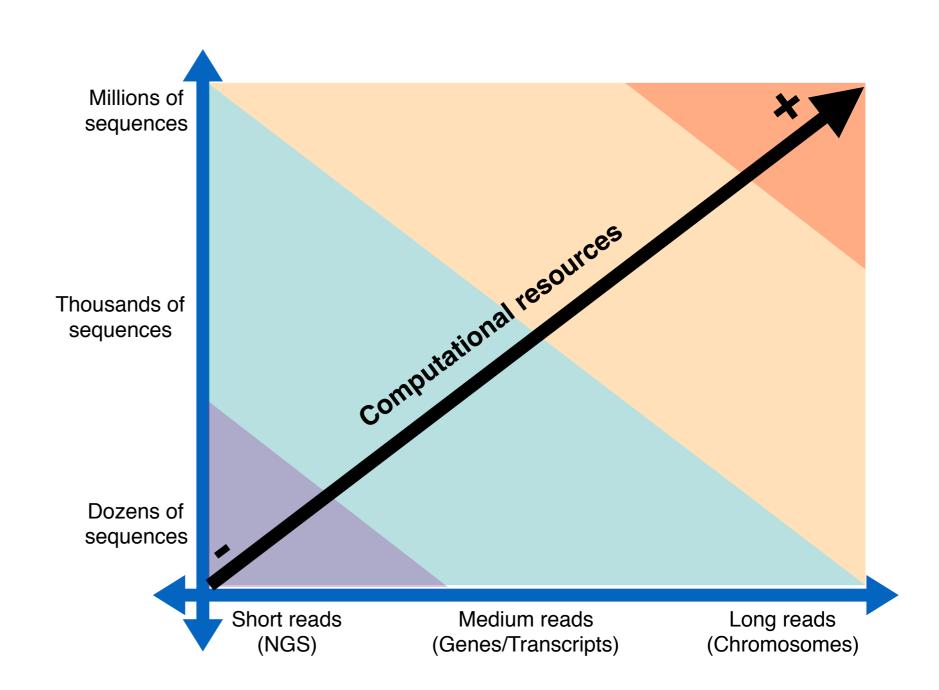
Sanger sequences

Genes/Transcripts/Sequence fragments

NGS long reads

Contig/scaffolds

Chromosomes


Billions

Dozens

Read Mapping Considerations:

- Length of the read.
- Number of reads.
- Size of the reference.
- Differences with the reference

Read Mapping Considerations:

- Length of the read.
- Number of reads.
- Size of the reference.
- Differences with the reference

ATGGCGTGGCAGCGACCAGT

ATGGCGTGGCAGCGACCAGTGACCAGTG
ACGTGTGCAGACGTGATATGCAGGCGCG
AGATGAGGAGGAGGTGAGAGGAGGAGTTG
ACGACGACGACGATGACGAGTGGGGATG
ATGACGACGATGGATGATTGAGTAGCGC
GTAG

Smaller it is the reference, faster will be the search

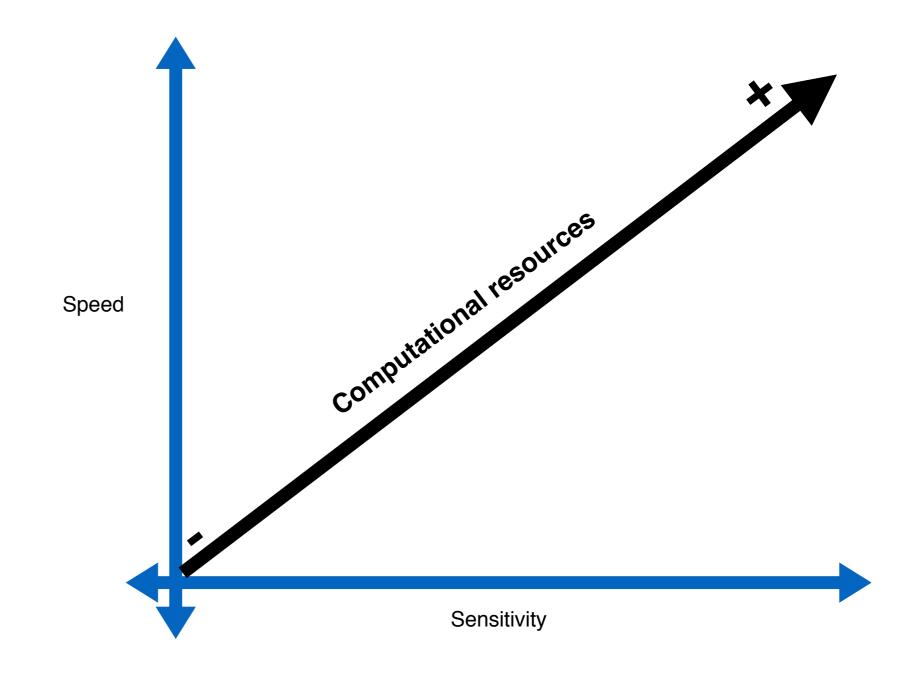
Read Mapping Considerations:

- Length of the read.
- Number of reads.
- Size of the reference.
- Differences with the reference

Missmatches GCAGCGACCAGTGACCA Reference GCAGCGACCAGCGA GCAGCGACCAG-GACCA GCAGCGACCAG-GACCA GCAGCGACCAG-GACCA GCAGCGACCAG-GA GCAGCGACCAG-GA GCAGCGACCAG-GA GCAGCGACCAG-GA GCAGCGACCAG-GA

Read Mapping Considerations:

- Length of the read.
- Number of reads.
- Size of the reference.
- Differences with the reference


More differences with the reference, more difficult will be to align and to map

Read Mapping Considerations:

- Length of the read.
- Number of reads.
- Size of the reference.
- Differences with the reference

MAPPING
SENSITIVITY = Reads mapped correctly
Reads mapped incorrectly

Read Mapping Methodologies:

- Hashing methods
- Suffix array methods

Reference (L=50) Read (L=23) ATGCCGTGCCACCACTGACCAGTGACGTGTGCAGACGTGATATGCA GACCAGTGACGTGTGCAGACCTG Indexing with Kmer = 20 (31 Kmers) Kmer = 20 (3 seeds)**ATGGCGTGGCAGCGACCAGT** CAGTGACCAGTGACGTGTGC TGGCGTGGCAGCGACCAGTG AGTGACCAGTGACGTGTGCA Perfect seed hit GACCAGTGACGTGTGCAGAC GGCGTGGCAGCGACCAGTGA **GTGACCAGTGACGTGTGCAG** ACCAGTGACGTGTGCAGACC GCGTGGCAGCGACCAGTGAC TGACCAGTGACGTGTGCAGA CGTGGCAGCGACCAGTGACC GACCAGTGACGTGTGCAGAC CCAGTGACGTGTGCAGACCT GTGGCAGCGACCAGTGACCA ACCAGTGACGTGTGCAGACG TGGCAGCGACCAGTGACCAG CCAGTGACGTGTGCAGACGT GGCAGCGACCAGTGACCAGT CAGTGACGTGTGCAGACGTG **Extension algorithms** Extension GCAGCGACCAGTGACCAGTG **AGTGACGTGTGCAGACGTGA** Needleman-Wunsch CAGCGACCAGTGACCAGTGA **GTGACGTGTGCAGACGTGAT** Smith-Waterman AGCGACCAGTGACCAGTGAC TGACGTGTGCAGACGTGATA FSA GCGACCAGTGACCAGTGACG GACGTGTGCAGACGTGATAT CGACCAGTGACCAGTGACGT **ACGTGTGCAGACGTGATATG** GACCAGTGACCAGTGACGTG CGTGTGCAGACGTGATATGC ACCAGTGACCAGTGACGTGT **GTGTGCAGACGTGATATGCA** CCAGTGACCAGTGACGTGTG

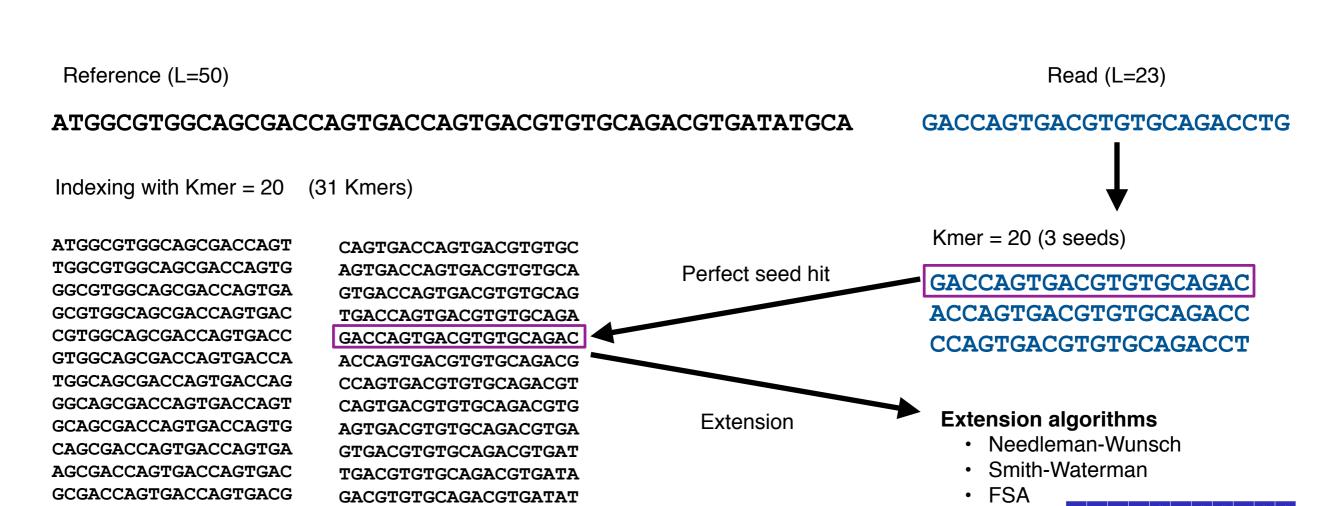
> -4 -6 -4 -6 -6 -4 -6 -4 -6 -9 -5 -5 -7 -3 -8 -7 -3 -7 -3 -7

Read Mapping Methodologies:

- Hashing methods
- Suffix array methods

CGACCAGTGACCAGTGACGT

GACCAGTGACCAGTGACGTG


ACCAGTGACCAGTGACGTGT

CCAGTGACCAGTGACGTGTG

Observations:

Small K, more sensitive but slower High K, more specific and faster but bigger databases

> -4 -6 -4 -6 -6 -4 -6 -4 -6 -9 -5 -5 -7 -3 -8 -7 -3 -7 -3 -7

ACGTGTGCAGACGTGATATG

CGTGTGCAGACGTGATATGC

GTGTGCAGACGTGATATGCA

 Exercise 7.1: Decompose the following sequence in Kmers of 10-mers

ATGGCGTAGGTGACCAGTGA

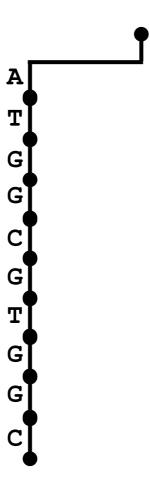
Read Mapping Methodologies:

Burrows-Wheeler indexes

- Hashing methods
- Suffix array methods

The Burrows–Wheeler transform (BWT, also called block-sorting compression) rearranges a character string into runs of similar characters. This is useful for compression, since it tends to be easy to compress a string that has runs of repeated characters by techniques such as move-to-front transform and run-length encoding. More importantly, the transformation is reversible, without needing to store any additional data except the position of the first original character. The BWT is thus a "free" method of improving the efficiency of text compression algorithms, costing only some extra computation.

		Transformation		
1. Input	2. All rotations	3. Sort into lexical order	4. Take the last column	5. Output
^BANANA	^BANANA ^BANANA A ^BANAN NA ^BANA ANA ^BAN NANA ^BA ANANA ^B BANANA ^B	ANANA ^B ANA ^BAN A ^BANAN BANANA ^ NANA ^BA NA ^BANA ^BANANA ^BANANA	ANANA ^B ANA ^BAN A ^BANAN BANANA ^ NANA ^BA NA ^BANA ^BANANA ^BANANA	BNN^AA A

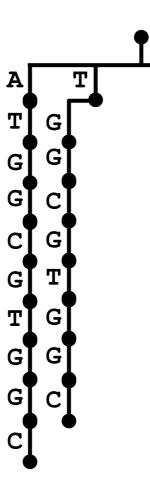

Read Mapping Methodologies:

- Hashing methods
- Suffix array methods

Reference (L=10)

ATGGCGTGGC

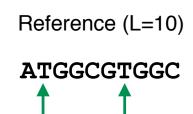
↑

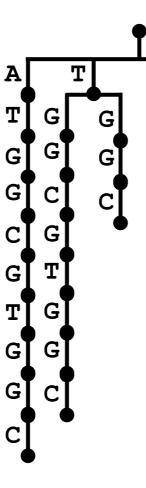


Read Mapping Methodologies:

- Hashing methods
- Suffix array methods

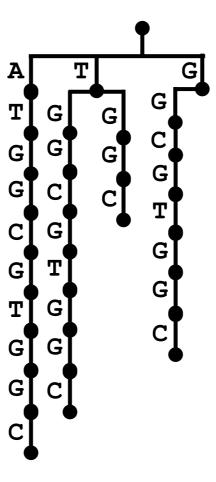
Reference (L=10)


ATGGCGTGGC



Read Mapping Methodologies:

- Hashing methods
- Suffix array methods



Read Mapping Methodologies:

- Hashing methods
- Suffix array methods

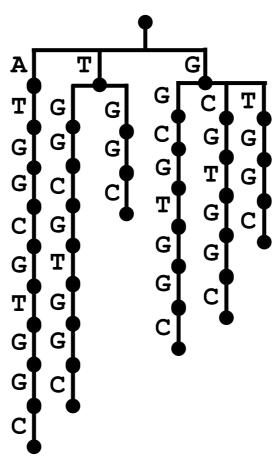
Reference (L=10)

Read Mapping Methodologies:

- Hashing methods
- Suffix array methods

Reference (L=10)

ATGGCGTGGC

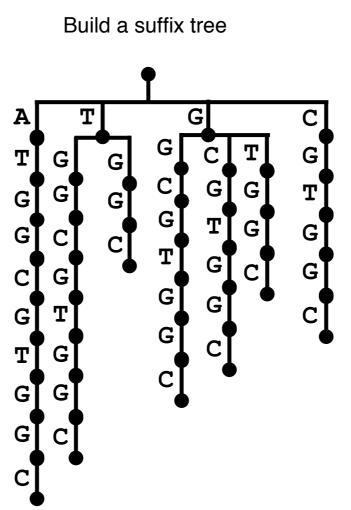


Read Mapping Methodologies:

- Hashing methods
- Suffix array methods

Reference (L=10)

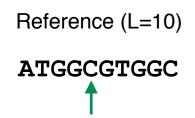
ATGGCGTGGC

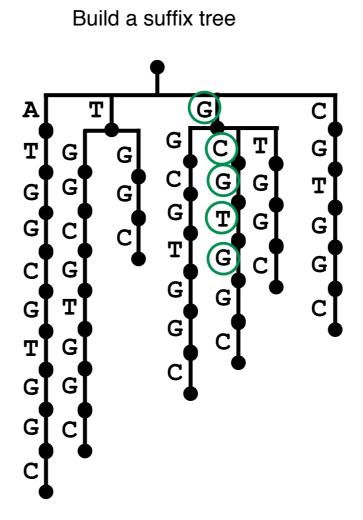


Read Mapping Methodologies:

- Hashing methods
- Suffix array methods

Reference (L=10)


ATGGCGTGGC



Read Mapping Methodologies:

- Hashing methods
- Suffix array methods

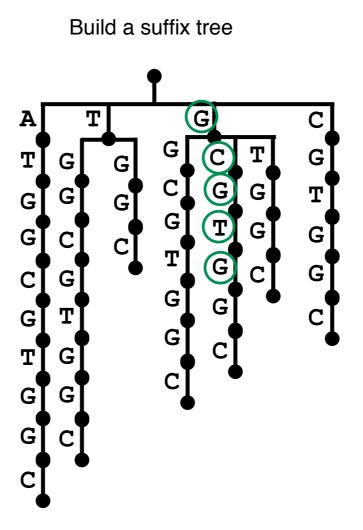
Read (L=5)

GCGTG

Follow the tree

Read Mapping Methodologies:

- Hashing methods
- Suffix array methods


Reference (L=10)

ATGGCGTGGC

Observations:

Very fast

With errors the search space increase quickly

Read (L=5)

GCGTG

Follow the tree

• Exercise 7.2: Build a suffix tree with the following sequence

ATGGCGTCGGT

Outline of Topics

- 1. Basics of read mapping.
- 2. Short read mapping.
- 3. Long read mapping.
- 4. Mapping of transcriptomic reads.
- 5. Visualization of mapped reads.
- 6. Uses and analysis.

Read Mapping Software:

Name	Туре	Input	Output
Bowtie	Short sequences	Fasta, Fastq	Sam
BWA	Short sequences	Fasta, Fastq	Sam
Novoalign	Short sequences	Fasta, Fastq	Sam
SOAP	Short sequences	Fasta, Fastq	Sam
Stampy	Short sequences	Fasta, Fastq	Sam

Read Mapping Software:

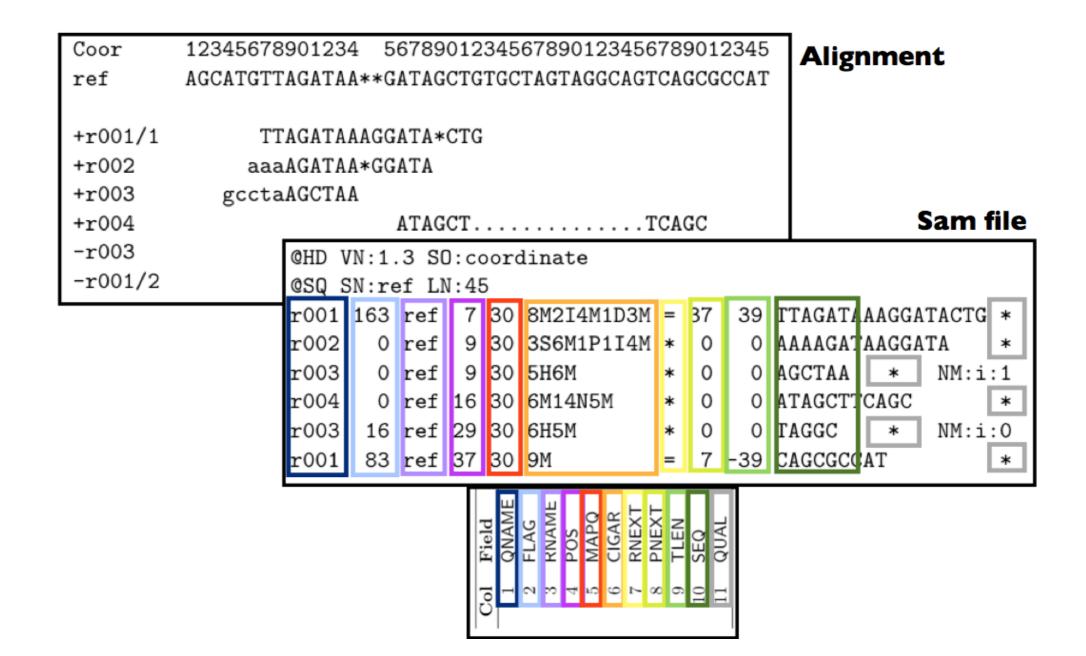
Fast gapped-read alignment with Bowtie 2

Ben Langmead & Steven L Salzberg

Affiliations | Contributions | Corresponding author

Nature Methods 9, 357–359 (2012) | doi:10.1038/nmeth.1923

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml


```
Usage:
 bowtie [options]* <ebwt> {-1 <m1> -2 <m2> | --12 <r> | <s>} [<hit>]
         Comma-separated list of files containing upstream mates (or the
  <m1>
          sequences themselves, if -c is set) paired with mates in <m2>
         Comma-separated list of files containing downstream mates (or the
  <m2>
          sequences themselves if -c is set) paired with mates in <m1>
         Comma-separated list of files containing Crossbow-style reads. Can be
  < > >
          a mixture of paired and unpaired. Specify "-" for stdin.
         Comma-separated list of files containing unpaired reads, or the
  <S>
          sequences themselves, if -c is set. Specify "-" for stdin.
         File to write hits to (default: stdout)
  <hit>
```


Read Mapping Software:

III. SAM/BAM

SAM (and its binary form BAM) format is designed to store read mapping information to a reference. It has 11 columns.

Read Mapping Software:

III. SAM/BAM

SAM (and its binary form BAM) format is designed to store read mapping information to a reference. It has 11 columns.

The 2nd column: FLAG defines the status of the read mapping.

Col	\mathbf{Field}
1	QNAME
2	FLAG
3	RNAME
4	POS
5	MAPQ
6	CIGAR
7	RNEXT
8	PNEXT
9	TLEN
10	SEQ
11	QUAL

Bit	Description
0x1	template having multiple segments in sequencing
0x2	each segment properly aligned according to the aligner
0x4	segment unmapped
0x8	next segment in the template unmapped
0x10	SEQ being reverse complemented
0x20	SEQ of the next segment in the template being reversed
0x40	the first segment in the template
0x80	the last segment in the template
0x100	secondary alignment
0x200	not passing quality controls
_0x400	PCR or optical duplicate

- ▶ Flag = 4 means 0x4 read unmapped
- ▶ Flag = 16 means 0x10 read reverse strand
- Flag = 83 means 0x1 read paired, 0x2 read mapped proper pair, 0x10 read reverse strand and 0x40 first in pair

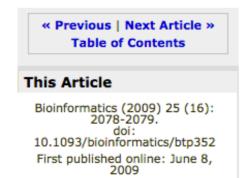
http://picard.sourceforge.net/explain-flags.html

• Exercise 7.3: Translate the following SAM flags

•
$$f = 289$$

Sam/Bam file manipulation:

Oxford Journals > Science & Mathematics > Bioinformatics > Volume 25, Issue 16 > Pp. 2078-2079.


The Sequence Alignment/Map format and SAMtools

Heng Li^{1,†}, Bob Handsaker^{2,†}, Alec Wysoker², Tim Fennell², Jue Ruan³, Nils Homer⁴, Gabor Marth⁵, Goncalo Abecasis⁶, Richard Durbin^{1,*} and 1000 Genome Project Data Processing Subgroup⁷

+ Author Affiliations

http://samtools.sourceforge.net/

```
samtools <command> [options]
                    SAM<->BAM conversion
Command: view
                    sort alignment file
        mpileup
                    multi-way pileup
                    compute the depth
        depth
                    index/extract FASTA
         faidx
         tview
                    text alignment viewer
         index
                    index alignment
         idxstats
                    BAM index stats (r595 or later)
                    fix mate information
        fixmate
                    simple stats
        flagstat
                    recalculate MD/NM tags and '=' bases
        calmd
                    merge sorted alignments
        merge
                    remove PCR duplicates
        rmdup
        reheader
                    replace BAM header
                    concatenate BAMs
                     read depth per BED region
        bedcov
                    cut fosmid regions (for fosmid pool only)
         targetcut
                     phase heterozygotes
         phase
         bamshuf
                     shuffle and group alignments by name
```

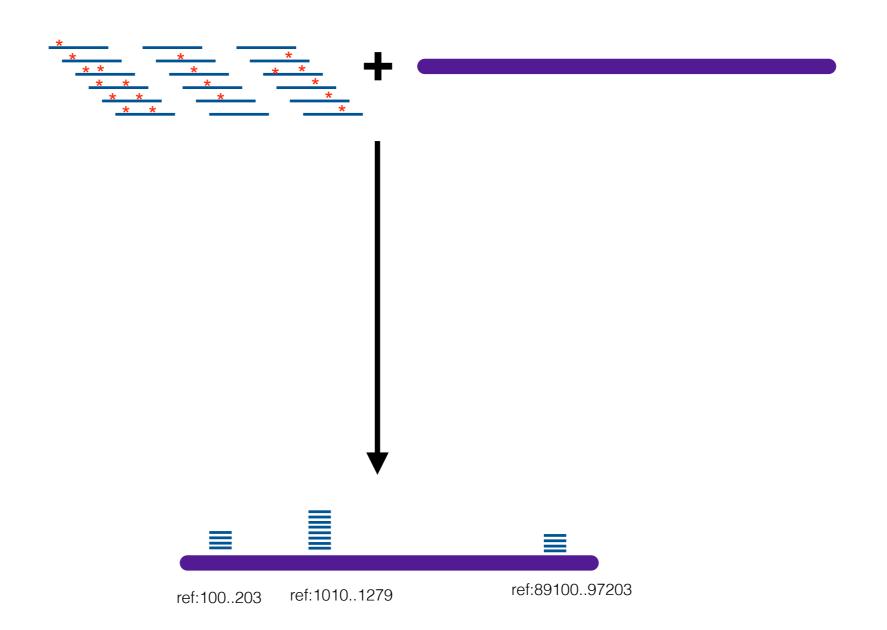

⇒

Outline of Topics

- 1. Basics of read mapping.
- 2. Short read mapping.
- 3. Long read mapping.
- 4. Mapping of transcriptomic reads.
- 5. Visualization of mapped reads.
- 6. Uses and analysis.

3. Long read mapping.

Long Read Mapping (Traditional tools):


Name	Туре	Input	Output
Mauve	Long sequences	Fasta, GenBank	backbone (positions) XMFA (alignments)
LastZ/MultiZ	Long sequences	Fasta	several (maf, sam)
Blast	Medium sequences	Fasta	Blast formats (0 text file, 6 tabular file)
Blat	Medium sequences	Fasta	Blast formats + Blat tabular format

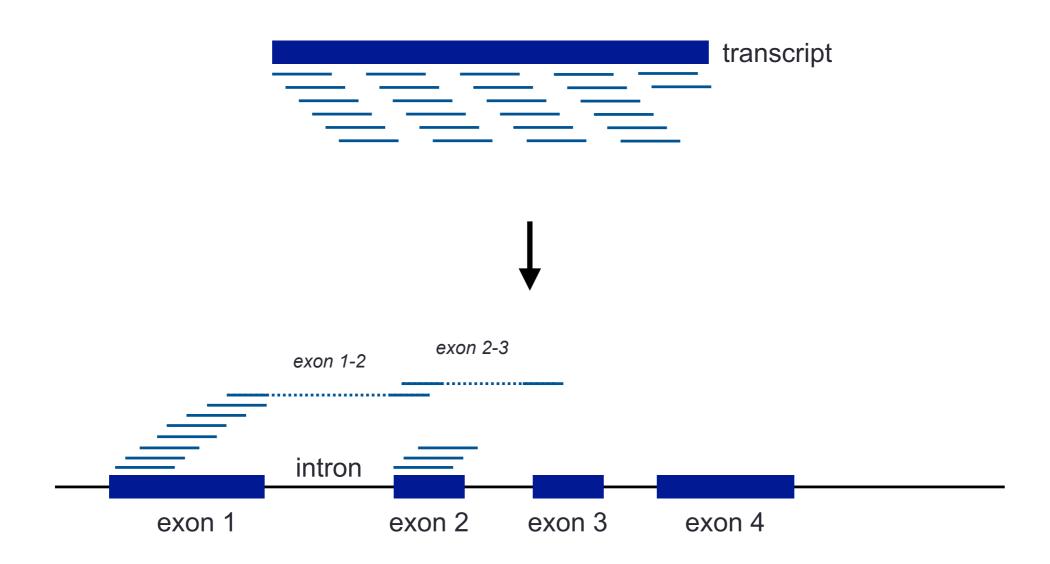
3. Long read mapping.

Long Read Mapping:

Long reads produced by NGS are "noisy" (full or errors).

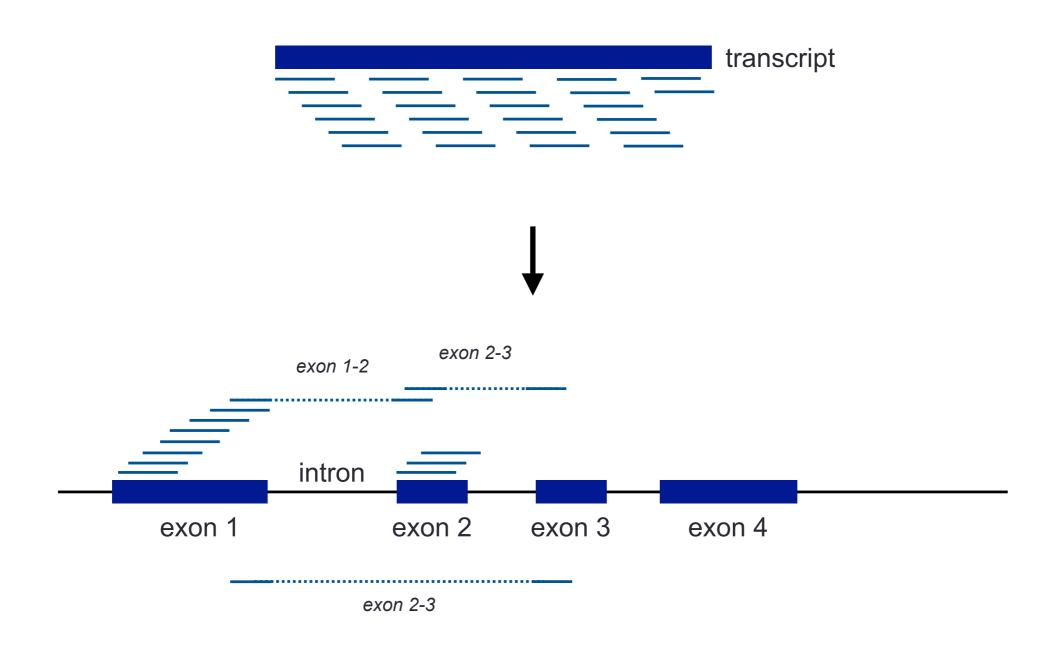
3. Long read mapping.

Long Read Mapping Software:


Name	Туре	Input	Output
BlasR	Long sequences	Fasta, Fastq	Sam
GMap	Long sequences	Fasta, Fastq	Sam
Minimap2	Long sequences	Fasta, Fastq	Sam
NGMLR	Long sequences	Fasta, Fastq	Sam
LordFAST	Long sequences	Fasta, Fastq	Sam

Outline of Topics

- 1. Basics of read mapping.
- 2. Short read mapping.
- 3. Long read mapping.
- 4. Mapping of transcriptomic reads.
- 5. Visualization of mapped reads.
- 6. Uses and analysis.



Transcriptome read alignment needs total into account:

Intron-exon boundaries

Transcriptome read alignment needs total into account:

- Intron-exon boundaries
- Alternative Splicings

Read Mapping Software for Transcriptome:

Name	Туре	Input	Output
Tophat2	Short sequences	Fasta, Fastq	Sam
Hisat2	Short sequences	Fasta, Fastq	Sam
STAR	Short sequences	Fasta, Fastq	Sam
Salmon	Short sequences	Fasta, Fastq	Sam

Read Mapping Software for Transcriptome:

Protocol | Published: 11 August 2016

Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown

Mihaela Pertea, Daehwan Kim, Geo M Pertea, Jeffrey T Leek & Steven L Salzberg
⊡

Nature Protocols 11, 1650–1667(2016) | Cite this article 29k Accesses | 647 Citations | 88 Altmetric | Metrics

Outline of Topics

- 1. Basics of read mapping.
- 2. Short read mapping.
- 3. Long read mapping.
- 4. Mapping of transcriptomic reads.
- 5. Visualization of mapped reads.
- 6. Uses and analysis.

5. Visualization of mapped reads.

Tablet

https://ics.hutton.ac.uk/tablet/

Tablet is a lightweight, high-performance graphical viewer for next generation sequence assemblies and alignments.

Tablet

Tablet is a lightweight, high-performance graphical viewer for next generation sequence assemblies and alignments.

5. Visualization of mapped reads.

IGV, Integrative Genomic Viewer

http://software.broadinstitute.org/software/igv/

The Integrative Genomics Viewer (IGV) is a high-performance visualization tool for interactive exploration of large, integrated genomic datasets. It supports a wide variety of data types, including array-based and next-generation sequence data, and genomic annotations.

Outline of Topics

- 1. Basics of read mapping.
- 2. Short read mapping.
- 3. Long read mapping.
- 4. Mapping of transcriptomic reads.
- 5. Visualization of mapped reads.
- 6. Uses and analysis.

6. Uses and Analysis.

Transcriptomic analysis

Epigenetic Analysis

Comparative genomics

. . .

